This function trains the TAPAS model using all binded subject-level tibble
s produced
from the tapas_data()
function. The TAPAS model is fit and clamp data is calculated. The clamp data
contains the predicted threshold when using the 10th and 90th percentile volume from training data.
tapas_train(data, dsc_cutoff = 0.03, verbose = TRUE, ...)
data | Data resulting from |
---|---|
dsc_cutoff | The Sørensen's–Dice coefficient (DSC) value to use as a cutoff for training inclusion.
By default 0.03 is used. This must be a single value between 0 and 1. Only training subjects with a subject-specific
threshold estimate resulting in Sørensen's–Dice coefficient (DSC) greater than or equal to the |
verbose | A |
... | additional arguments to pass to |
A list
with the TAPAS model (tapas_model
) of class
gam
, the group-level threshold, a tibble
with the clamp
information (clamp_data
), and a tibble
with the training
data. The clamp information contains the TAPAS-predicted smallest and
largest threshold to be applied by using estimates related to the volume at
the 10th and 90th percentile.
if (FALSE) {
# Data is provided in the rtapas package as arrays. Below we will convert them to nifti objects.
# Before we can implement the train_tapas function we have to generate the training data
library(oro.nifti)
# Create a list of gold standard manual segmentation
train_gold_standard_masks = list(gs1 = gs1,
gs2 = gs2,
gs3 = gs3,
gs4 = gs4,
gs5 = gs5,
gs6 = gs6,
gs7 = gs7,
gs8 = gs8,
gs9 = gs9,
gs10 = gs10)
# Convert the gold standard masks to nifti objects
train_gold_standard_masks = lapply(train_gold_standard_masks, oro.nifti::nifti)
# Make a list of the training probability maps
train_probability_maps = list(pmap1 = pmap1,
pmap2 = pmap2,
pmap3 = pmap3,
pmap4 = pmap4,
pmap5 = pmap5,
pmap6 = pmap6,
pmap7 = pmap7,
pmap8 = pmap8,
pmap9 = pmap9,
pmap10 = pmap10)
# Convert the probability maps to nifti objects
train_probability_maps = lapply(train_probability_maps, oro.nifti::nifti)
# Make a list of the brain masks
train_brain_masks = list(brain_mask1 = brain_mask,
brain_mask2 = brain_mask,
brain_mask3 = brain_mask,
brain_mask4 = brain_mask,
brain_mask5 = brain_mask,
brain_mask6 = brain_mask,
brain_mask7 = brain_mask,
brain_mask8 = brain_mask,
brain_mask9 = brain_mask,
brain_mask10 = brain_mask)
# Convert the brain masks to nifti objects
train_brain_masks = lapply(train_brain_masks, oro.nifti::nifti)
# Specify training IDs
train_ids = paste0('subject_', 1:length(train_gold_standard_masks))
# The function below runs on 2 cores. Be sure your machine has 2 cores available or switch to 1.
# Run tapas_data_par function
# You can also use the tapas_data function and generate each subjects data
data = tapas_data_par(cores = 2,
thresholds = seq(from = 0, to = 1, by = 0.01),
pmap = train_probability_maps,
gold_standard = train_gold_standard_masks,
mask = train_brain_masks,
k = 0,
subject_id = train_ids,
ret = TRUE,
outfile = NULL,
verbose = TRUE)
# We can now implement the train_tapas function using the data from tapas_data_par
tapas_model = tapas_train(data = data,
dsc_cutoff = 0.03,
verbose = TRUE)
# The TAPAS GAM model
summary(tapas_model$tapas_model)
# The threshold that optimizes group-level DSC
tapas_model$group_threshold
# The lower and upper bound clamps to avoid extrapolation
tapas_model$clamp_data
# The training data for the TAPAS `mgcv::gam` function
tapas_model$train_data
}